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A B S T R A C T

Travel behavior and travel cost in modern urban transportation systems are impacted by many
aspects including heterogeneous traffic (private cars, freight trucks, buses, etc.) on roads, parking
availability near destinations, and travel modes available in the network, such as solo-driving,
carpooling, ride-hailing, public transit, and park-and-ride. Managing such a complex multi-modal
system requires a holistic modeling framework of transportation network flow in terms of both
passenger flow and vehicular flow. In this paper, we formulate and solve for spatio-temporal
passenger and vehicular flows in a general multi-modal network explicitly considering multi-
class vehicles, parking facilities, and various travel modes. Vehicular flows, namely cars, trucks,
and buses, are integrated into a holistic dynamic network loading (DNL) model. Travel behavior
of passenger demand on modes and routes choices is encapsulated by a multi-layer nested logit
model. We formulate the multi-modal dynamic user equilibrium (MMDUE) that can be cast into a
Variational Inequality (VI) problem. A simple flow solution performed at the origin-destination
level and based on the gradient projection is derived from the KKT conditions and shown to
efficiently solve for the VI problem on large-scale networks. Numerical experiments are con-
ducted on a multi-modal network in the Pittsburgh region along with sensitivity analysis with
respect to demand and management strategies. We show that many factors including the total
passenger demand, parking prices, transit fare, and ride-sharing impedance can effectively im-
pact the system performance and individual user costs. Experiments on a large-scale multi-modal
network in Fresno, California also show our model and solution algorithm have satisfactory
convergence performance and computational efficiency.

1. Introduction

Thanks to cutting-edge communication and sensing technologies, new transportation modes are emerging while traditional modes
are also being improved and innovated. Vehicles and rides can be shared from end to end, such as pick up, drop off, and parking.
Transportation becomes unprecedentedly ubiquitous, low cost and diversified nowadays, especially in densely populated me-
tropolitan areas. People frequently take public transit (subway, regular bus, first/last mile feeder transit, paratransit, etc.), carpool, or
use the ride-hailing services like taxis, Uber and Lyft, in addition to driving in a private car. To make modal choices, travelers make
trade-offs among traffic congestion, convenience, parking fare, parking cruising time, and expenditures to pay for travel. From the
system perspective, the co-existence of all these travel modes leads to diversified and complex systems that enable more instruments
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to alleviate traffic congestion and improve users’ quality of life, provided that the comprehensive system of systems can be designed,
modeled and operated effectively. In this research, we formulate and solve for spatio-temporal passenger and vehicular flows in a
general multi-modal network explicitly considering multi-class vehicles (private cars, freight trucks, buses, etc.), parking facilities
and various travel modes including solo-driving, carpooling, ride-hailing, bus transit, railway transit, parking, and park-n-ride. The
intention is to develop a general mathematical formulation to comprehensively model the entire transportation system that would
allow the flexibility of modeling any subset of vehicles, passengers and modes. Insights are provided to better understand the
interaction and linkage among each component of the transportation system and to ultimately facilitate optimal decision making on
holistic system planning and operation.

In general, given the transportation network supply and Origin-Destination (OD) demand, a dynamic traffic assignment (DTA)
allocates the spatio-temporal flow of both vehicles and passengers on the network with a pre-determined behavioral model (of-
tentimes the choices of routes, departure time and modes). In a multi-modal transportation network that integrates roadways, public
transit, and parking, multi-modal DTA yields the performance of each mode of transportation systems in terms of spatio-temporal
flow. Over the last few decades, DTA with a single travel mode of solo-driving has been studied intensively. Travelers’ behavior in
choosing different traffic modes altogether, such as the public transit, carpooling, park-and-ride (PnR), as well as travelers’ behavior
related to parking, were not the focus of the conventional DTA problem. On the other hand, simulation-based DTA on large-scale
networks requires dynamic network loading (DNL) models to obtain travel costs/time. Most of existing DNL models assume
homogeneous traffic flow in the unit of standard passenger cars, e.g., a single-class cell transmission model (Daganzo, 1994). Multiple
vehicle classes, such as buses, trucks and standard passenger cars, can be explicitly modeled in DNL, but are usually not explicitly
considered when augmenting the DNL with behavior models in a DTA model. Another challenge for DTA is how to make the best use
of the spatio-temporal data for different travel modes to best understand travel patterns and connections across those modes and to
validate DTA models. In this paper, we proposed a general formulation of multi-modal dynamic user equilibrium (MMDUE) problem
considering both the travelers’ behavior across multiple modes and heterogeneous traffic flow in multi-modal networks. This general
framework that holistically models many components of a transportation system would enable further validation by emerging real-
world data collected from the roadway, public transit, and parking systems. Though this paper does not focus on validation using
real-world data, we show that the holistic model holds great promises to quantify ripple effects of disruption to any part of a
transportation network, and thus is able to provide policy/managerial insights.

In the literature, although the private driving mode was studied the most, the multi-modal network modeling still received
adequate attention in the past, mostly in static network settings. Early in the 1970s, Wigan and Bamford (1973) and Florian (1977)
studied traffic network equilibrium modeling with the consideration of traveling by cars and buses. Florian (1977) combined demand
functions for each mode of travel, route choice equilibrium conditions, transit network models and the interactions of different classes
of vehicles on the links in an integrated network simultaneously. Abdulaal and LeBlanc (1979) presented a combined modal split and
assignment model which allows choosing traveling modes and routes simultaneously, with its extension (Leblanc and Abdulaal,
1982) to multi-class users where trip distribution, modal split, and traffic assignment are all combined simultaneously. Similarly, a
number of other works also advanced the formulation, analysis, and algorithms of multi-modal network equilibrium problems
(Dafermos, 1982; Florian and Spiess, 1983; Lam and Huang, 1992). These studies often considered two or three traffic modes (mostly
private car, public transit) and represented travel time/cost as a single link-based cost function due to the nature of a static network.

In addition to the aforementioned studies considering “plain” mode of travel, there are also plenty of studies in which the
“composite” or “combined” mode is explicitly presented, for example, the park-and-ride or bus/ride-hailing access to metro. Florian
and Los (1979) proposed a model for determining the intermediate OD matrices from trip origins to parking lots and from parking lots
to final destinations for park-and-ride travelers using Lindenwold rapid transit line in Philadelphia. Fernández et al. (1994) gave a
classic steady-state assignment model that combines the binary mode choice and passenger flow assignment. They assumed that the
probability of choosing a traffic mode follows a logit model. Lo et al. (2003) studied the modeling of transfers in multi-modal
networks, which involves “combined mode” trips. It explicitly considered the number and types of transfers, and it also accom-
modated a non-linear fare structure, which was extended by Lo et al. (2004). In Garcia and Marin (2005), users’ mode choice and
transfer location choice are governed by a nested logit model, and the static user equilibrium is formulated as a variational inequality
(VI) problem, which is solved by a disaggregate simplicial decomposition algorithm. These studies are not conducted in the “dy-
namic” network setting, hence the dynamic evolution of demand and congestion was not considered.

More recently, Abdelghany and Mahmassani (2001) proposed a simulation-based DTA model with several travel modes including
private cars, buses, metro-subway, and carpooling. A medium-sized network experiment was presented with no parking facility and
parking cruising behavior explicitly modeled in the simulation. This work was extended in Zhou et al. (2008) to be applied to a large-
scale multi-modal network from the Baltimore-Washington corridor, but parking behaviors and heterogeneous traffic (cars, trucks,
buses, etc.) are still not considered. Zhang et al. (2008) studied the dynamic freight assignment problem on a large-scale inter-modal
network in Europe. In this study, they used a dynamic micro-assignment method to make a joint mode, path, service, and carrier
choice. Verbas et al. (2015) studied the dynamic assignment-simulation methods in large-scale urban multi-modal transit networks,
with the assumption that link travel times of transit vehicles are independent of traffic network conditions. In Zheng and Geroliminis
(2016) and Zheng et al. (2016), the modeling and optimization of multi-modal networks with parking space limitation and dynamic
parking pricing were studied based on the macroscopic fundamental diagram (MFD). Chiabaut (2015) extended MFD to passenger
based MFD which combines several modes. Meschini et al. (2007) proposed a bi-modal DTA model with private cars and public
transit, and solved for equilibrium solutions using a macroscopic flow model without a DNL process. Liu and Geroliminis (2017)
presented a multi-region multi-modal transportation system model that enables travelers to update their travel patterns on a day-to-
day basis, based on which an adaptive parking pricing strategy can be proposed to effectively reduce the total social cost. Other
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modeling approaches including activity-based model are also intensively studied for the past decade, for example, MATSIM
(Axhausen et al., 2008; Horni et al., 2016) is an agent-based simulation tool for multi-modal transportation networks. However, it
requires a large amount of survey data about urban residents’ daily activities and schedules to build the activity chains of residents as
the input of the model, which is usually costly to obtain. In MATSIM, the DUE is solved by iteratively re-planning each individual’s
daily activity chains, which makes it hard to calibrate the model and validate the results for large-scale networks. The reasons are: (1)
individual’s daily activity data are hard to acquire; (2) calibrating an activity-based model in the network level using sensor data (e.g.
traffic counts/speeds) are very challenging. The computational challenge for large-scale network is also another issue. Simulation and
traffic analysis platforms, e.g., VISUM-VISSIM (PTV, 2018), can also provide realistic multi-modal traffic simulation features.
However, the DUE can only be solved for private traffic in VISUM without public transportation and parking behavior. Other open-
source DTA tools like DTALite (Zhou and Taylor, 2014), DTALite-S (Tong et al., 2019), etc. also consider multi-modal traffic including
driving and public transportation, but other travel modes and parking behaviors are not explicitly modeled. To our best knowledge,
research gap exists where large-scale multi-modal DTA explicitly integrates passenger flow and vehicular flow, and holistically
considers heterogeneous traffic flow on roads, traveler’s parking behaviors, and various travel modes including solo-driving, car-
pooling, ride-hailing, bus transit, railway transit, and park-and-ride. Complications are to integrate realistic behavioral models as well
as network flow models in such a general and complex multi-modal network, and to solve such a complex network model efficiently
and effectively that can be calibrated with large-scale transportation data.

In this paper, we establish a general multi-modal dynamic user equilibrium (MMDUE). It is capable of modeling four travel
modes, driving (including solo-driving and carpooling), ride-hailing, public transit (including railway with its own right-of-way and
buses that share the roadway with private vehicles), and park-and-ride. It is also capable of modeling travelers’ parking behavior
(including parking lot choice and parking cruising time). Travelers choose their travel modes and routes with respect to their gen-
eralized travel costs of all options made available to them. A multi-modal DNL model simulates multi-class vehicles (cars, trucks, and
buses) to estimate travel costs by mode and by route. MMDUE is then solved in the multi-modal multi-class network using a newly
developed gradient projection algorithm that possesses a simple form and is efficient for large networks. System performance and
features of passenger/vehicular flow can then be assessed for decision making.

This research makes the following major contributions to the literature:

• It establishes a combined multi-modal transportation network consisting of an auto network, a railway network, a bus network,
and parking facilities. This combined network allows modeling of vehicular and passenger flow, composite modes through paths
in the network, as well as link and path-based generalized travel cost for passengers.
• It explicitly considers parking choices over time. Choices of parking near destination and park-and-ride stations are dependent on
parking prices and parking cruising time.
• It proposes a new MMDUE formulation across all possible modes, such as solo-driving, carpooling, ride-hailing, bus transit,
railway transit, and park-and-ride. Mode choices are governed through a multi-layer nested logit model. A novel VI formulation
and its equivalence to the MMDUE is provided and shown.
• The multi-modal DNL process is capable of modeling the propagation of mixed traffic flow including cars, trucks, and buses.
• It solves the VI formulation for MMDUE with a new projection based solution algorithm. The algorithm is performed at the O-D
level, and thus can be efficient in terms of computational time and storage. It shows decent convergence performance compared to
existing algorithms.
• The proposed model and algorithm can help understand the comprehensive interaction and linkage among each component of
complex transportation systems. The case study demonstrates how to quantify such a “ripple effect” to the comprehensive system
induced by interventions on demand, supply, and management strategies.

The content of this paper is arranged as follows. Section 2 first introduces the combined multi-modal transportation network and
illustrates the difference between passenger/vehicle path, flow, and demand with an illustrative example. Section 3 describes the
mode choice model of travelers in the general multi-modal traffic systems and formulates the MMDUE problem as a discrete VI
problem. Then Section 4 describes the mesoscopic multi-modal DNL model used in the simulation and how to use simulation for
estimation of travel costs. Section 5 provides the algorithm to solve the VI problem, hence to obtain the user equilibrium state of the
multi-modal system. In Section 6, we show the performance of our model and algorithm on two multi-modal networks of Pittsburgh,
PA and Fresno, CA, with roadway driving, public transit, and parking. The convergence property and equilibrium solution are
thoroughly analyzed. Multiple sensitivity analyses are also performed to show the properties and stability of the multi-modal traffic
system. Section 7 concludes this paper. The main notations used in this paper are listed in Table A.4 in Appendix A.

2. A combined multi-modal transportation network

This paper first establishes a combined multi-modal transportation network consisting of an auto network, a railway network, a
virtual bus network and parking facilities. Buses share the same roadway network as cars, and therefore a virtual bus network is
created by combining a copy of part of the roadway network and bus stations (as shown in Fig. 1). A physical stop (PS) is a bus stop
where bus passengers board/alight the buses, and it can be associated with multiple routes. On the other hand, a virtual stop (VS)
connects a PS to a particular route, and it does not physically exist. The link between any two VSes describes the movement of a bus
between the two corresponding PSes on a particular route. While a bus follows a fixed route in the virtual bus network, its travel cost/
time is modeled by the DNL model with multiple classes of vehicles, e.g. private cars, trucks, and buses, in the auto network. The
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railway transit routes have their own right-of-way and therefore are separated from the auto network. Similar to bus transit, we also
used physical railway station (PR) and virtual railway station (VR) and the boarding/alighting links to model the passenger waiting at
stations, boarding and alighting from railway trains. Also, there are two types of parking facilities considered in the network, park-
and-ride stations, and near-destination parking lots/spaces. If travelers commute from the suburban area to the central business
district (CBD), they have choices of parking their cars at one of those park-and-ride stations along the corridor and then take the
transit to the destination, which is represented by the parking (P) nodes in Fig. 1 and it requires an additional transfer time between
the driving mode and transit mode. Or if they choose to drive all the way to the CBD, then they need to park near their destinations
and usually pay for high parking fees. Another choice is to use the ride-hailing service, which requires a ride fee but exempts from
time finding a parking space as well as paying the parking fee. In this multi-modal network, walking links are also explicitly modeled
to represent walking from origin to bus stops and train stations, from the parking area to bus stops and train stations, transfer among
bus stops and train stations, and from parking areas, bus stops and train stations to the final destination.

Note in this multi-modal network, the path, flow and demand of passengers are different from those of vehicles. A passenger path
is retrieved on the multi-modal network with the auto network, virtual bus network, railway network and parking facilities all
combined. Thus, between any origin and destination (OD) there could be multiple paths under different travel modes. But for a
vehicle path, railway train and buses follow the fixed paths, while a private car’s path is just a portion of a passenger’s path on the
auto network (e.g. the driving portion of a park-n-ride path). The vehicle demand between any OD is dependent on the passenger
demand as well as their mode choices. Different classes of vehicles are generated and loaded on the network and they can also carry
different numbers of passengers. Example 1 shows the difference between passenger and vehicle flow.

Example 1 (Passenger/vehicle path, flow and demand). In this example, we illustrate the differences between passenger/vehicle flow.
In Fig. 1, we study the passenger demand qt

O O1 2 for OD pair O O( , )1 2 at time t. Suppose q 10t
O O1 2 = , we consider three passenger paths

at time t as follows:

• Two passenger carpool, O A A A A P O1 1 2 3 4 5 2, passenger flow 6
• Park-and-ride, O A P PS VS VS VS PS O1 1 1 2 2 3 4 4 2, passenger flow 3
• Railway, O PR VR VR VR VR PR O1 1 1 2 3 4 4 2, passenger flow 1For example, O A A A i, , 1, 2, 3i i1 1 1 =+ and

A P1 1 refer to the link travel by car, P PS1 2 refers to walking from the parking lot to bus station, PS VS2 2 refers to bus
boarding,VS VS i, 1, 2, 3i i 1 =+ refer to the link travel by bus,VS4 to PS4 refers to bus alighting and PS O4 2 refers to walking from
bus stop to destination. Similarly, VR VR i, 1, 2, 3i i 1 =+ refer to the railway travel.We formulate the corresponding vehicle flow as
follows:

• Car (two passenger carpool), O A A A A O1 1 2 3 4 2, vehicle flow 6/2 3=
• Car (park-and-ride), O A P1 1 1, vehicle flow 3
• Bus (Line 1), this vehicle path is pre-determined by the public transit operator, and the vehicle flow is independent of passenger
flow, but relates to the bus scheduleIn this study, vehicular flow is explicitly simulated on the auto network, for estimating the

dynamic network conditions including the traffic states on links and at intersections, as well as the parking occupancy in parking
facilities. Passenger flow is not loaded on the network but is fulfilled by the vehicle loading process under the constraint of network
demand and supply. In detail, given passenger OD demand, their mode choice and route choice models yield the passenger path/flow
based on initial network conditions. We then calculate the vehicle flow from passenger path/flow and their mode choices, and load
vehicles on the network and update the network conditions. The mode and route choices can be updated based on new network
conditions, so do the passenger flow and vehicle flow. This procedure goes on until the equilibrium state is achieved. The whole
process is shown in Fig. 2.

Fig. 1. A combined multi-modal transportation network: O: OD node; A: auto node; P: parking node; PS: physical bus stop; VS: virtual bus stop; PR:
physical railway station; VR: virtual railway station.
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3. Mode choice and network equilibrium

3.1. A nested-logit mode choice model

In this research, mode choices are determined by a nested logit model shown in Fig. 3. For any O-D pair, in the upper level,
travelers choose to drive, use ride-hailing service, take the transit or use a combined mode (park-and-ride). For travelers who choose
to drive, they have the choices of either driving alone or carpool with others in the lower decision level. For travelers who choose to
use ride-hailing service, they have the choices of either ride-hailing all the way to the destination or ride-hailing to any railway
station and then transfer to the railway mode. If travelers choose public transit, then they can take the bus, railway train or transfer
between both bus and railway mode. If they choose a combined mode, then there are four choices in their lower decision level
including solo-driving+bus, solo-driving+ railway, carpooling+ bus, carpooling+ railway.

Following the work of Arnott et al. (1990) and Qian and Zhang (2011), we define the generalized traveling cost for each travel
mode. We use the subscripts 1, 2, 3 and 4 to represent the transit mode, driving mode, ride-hailing mode and park-and-ride mode,
respectively. Let c m, {1, 2, 3, 4}m k t

rs
, , denote the generalized travel cost of a traveler from r to s using travel mode m departing at

time t and taking the path k k P, m
rs, where Pm

rs denote the path set for mode m from r to s. A transit passenger is subject to the
following generalized travel cost c k t

rs
1, , ,

c w max t w t t t w k P[ ( ), ( )] ,k t
rs

k t
rs

k t
rs

k t
rs

k
rs

k t
rs rs

1, , , , , , 1= + + + + (1)

where

• wk t
rs
, denotes the actual travel time through path k at time t from r to s, note, in this case, the actual travel time wk t

rs
, is the

summation of possible transit waiting time, bus/railway travel time and all possible walking time, including from origin to transit
station, transfer among transit stations, and from transit station to destination, during this trip.
• t is the standard work starting time. is the unit cost of travel time. and are the unit cost of time for arriving late and arriving
early, respectively. This second term is known as the schedule delay cost.
• k

rs represents the transit fare of transit route k from r to s.
• k t

rs
, is the possible perceived inconvenience cost of the transit mode associated with the crowding of transit route k from r to s.

As indicated by previous models of dynamic transit network, e.g. Liu and Zhou (2016), the vehicle carrying capacity of public
transportation could be an important constraint that affects travelers’ choice of using public transportation under certain circum-
stances, for example when the public transit vehicle is highly crowded and the service is unreliable. We can explicitly or implicitly
model the vehicle capacity during the dynamic public transit loading. The vehicle capacity can be strictly enforced by maintaining a
passenger flow queue at each physical transit stop and adding passenger flow to transit vehicles only if the in-vehicle flow does not
exceed the capacity. In addition, the capacity constraints can be implicitly incorporated in the perceived inconvenience cost k t

rs
, . For

different public transit lines, the inconvenience costs can be estimated based on the historical data of crowding level, on-time
performance, etc. Transit lines with high crowding level and poor on-time performance will cause larger perceived inconvenience
cost k t

rs
, .

Similarly, if we assume carpooling is only available for travelers with the same origins and destinations, then the pick-up and

Fig. 2. The whole process for solving MMDUE in this study.

Fig. 3. The two-layer mode choices (“SD”= “solo-driving”, “CP”= “carpooling”, “RH”= “ride-hailing”).
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drop-off travel time can be ignored. Then the generalized travel cost of driving departing at time t and taking the path k is,

c w max t w t t t w
p
n

n k P[ ( ), ( )] ( ) ,k t
rs

k t
rs

k t
rs

k t
rs i

k t
rs rs

2, , , , , , 2= + + + + + (2)

where

• pi is the parking fee at parking area i, here parking area i is on the path k.
• n is the number of pooled travelers, and n 1= means solo-driving. n( )k t

rs
, represents the carpooling impedance cost through path k

at time t from r to s with total n riders, (1) 0k t
rs

, = .
• is an indicator of accessibility to a private car. If the traveler owns a car or has access to a private car then 0= , otherwise it
should be a large constant.
• For achieving a higher model fidelity, the fuel costs and vehicle depreciation can also be included in the cost function. Here we
omit these costs to simplify the calculation in numerical experiments.

The generalized travel cost of using ride-hailing service departing at time t and taking the path k is,

c w max t w t t t w k P[ ( ), ( )] ,k t
rs

k t
rs

k t
rs

k t
rs

k t
rs rs

3, , , , , , 3= + + + (3)

where k t
rs
, is the ride fee of the ride-hailing service through path k at time t from r to s. Here wk t

rs
, should also include waiting time for

pick up in addition to the car travel time.
The generalized travel cost of park-and-ride departing at time t and taking the path k is,

c w max t w t t t w
p
n

n k P[ ( ), ( )] ( ) ,k t
rs

k t
rs

k t
rs

k t
rs i

k t
rs

k
rs

k t
rs rs

4, , , , , , , 4= + + + + + + + (4)

A reasonable assumption is that parking is much cheaper at park-and-ride stations than near CBD. As a result, people usually park
in the suburb and transfer to public transit to get to CBD. Note, in this case, the actual travel cost wk t

rs
, is the summation of driving

time, possible parking cruising time, walking time from the parking lot to the bus station, bus travel time and possible walking time
from the station to the destination. We will discuss how to use dynamic network loading for computing wk t

rs
, in Section 4.

3.2. Multi-modal dynamic user equilibrium (MMDUE)

The MMDUE with a nested logit mode choice model can be further formulated as a variational inequality (VI) problem. In
particular, for formulating and solving the MMDUE in a more applicable way, the OD demand for each time interval t is assumed to
be fixed, so there is no departure time choice in this paper. However, it is easy to extend MMDUE to accommodate departure time
choice by relaxing the feasibility set.

Consider a single-level logit model applied in the dynamic multi-modal transportation network. The UE condition of the whole
network reads, r s t m, , , ,

c µ k P f
c µ k P f

0 if , 0
0 if , 0

m k t
rs

m t
rs

m
rs

m k t
rs

m k t
rs

m t
rs

m
rs

m k t
rs

h
q

e

e

, , , , ,

, , , , ,

m t
rs

t
rs

m µm t
rs

m
m µm t

rs
, ( 1 , )

( 1 , )

= >
=

=
+

+ (5)

where µm t
rs

, is the equilibrium cost of travel mode m from r to s departing at time t. fm k t
rs
, , is the flow of path k in mode m from r to s

departing at time t. The flow of mode m between O-D pair rs departing at time t is h fm t
rs

k P m k t
rs

, , ,m t
rs
,

= . The total flow between O-D
pair rs departing at time t is q ht

rs
m m t

rs
{1,2,3,4} ,= . The m and 1 are parameters in the logit model.

Let f be the vector of all path flows. The MMDUE can be cast into a VI problem VI( , )1 1 as follows (see proof in Section 3.3.1).

c

f q

f f f f f
f f

f f

f

Find such that ( ) · ( ) 0,
where ( ) { ( )}

( ) ( )

{ | }

T

k t
rs

k t
rs

m k t
rs h

k
m k t
rs

t
rs

1 1

1 ,

, , ,
ln

1 , ,

m m t
rs

,

1

=

= +

= =

+

(6)

For a more general case where we have two levels of mode choices (a nested logit), let g m( ) denote the second level mode choices
under first level mode choice m, and define the c µ P f q, , , , as same as the first-layer MMDUE. The two-layer MMDUE condition reads,

r s t m g m, , , , ( ),
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c µ k P f
c µ k P f

µ e

0 if , 0
0 if , 0

ln

m g m k t
rs

m g m t
rs

m g m
rs

m g m k t
rs

m g m k t
rs

m g m t
rs

m g m
rs

m g m k t
rs

h
q

e

e

h

h
e

e

m t
rs

g G m

µ

, ( ), , , ( ), , ( ) , ( ), ,

, ( ), , , ( ), , ( ) , ( ), ,

,
1

( )

( )

m trs

t
rs

m µm t
rs

m
m µm t

rs

m g m t
rs

m trs
g m
m mµm g m t

rs

g G m g
m mµm g t

rs

m g
m m

m g t
rs

,
( 1 , )

( 1 , )

, ( ),

,

( ( ) 2 , ( ), )

( )
( 2 , , )

2
2 , ,

= >
=

=

=

= +

+

+

+

+

(7)

where G m( ) is the set of all second level mode choices under mode m. The g m
m
( ) and m

2 are also parameters in the logit model. Note
the last formula in (7) defines the relationship between the first level mode equilibrium cost µm t

rs
, and the two levels mode equilibrium

costs µ g m G m, ( ) ( )m g m t
rs
, ( ), . In this case, the µm t

rs
, is defined as an average over µ g m G m, ( ) ( )m g m t

rs
, ( ), . The flow of mode

m g m{ , ( )} between O-D pair rs departing at time t is:
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It can also be cast into a VI problem VI( , )2 2 as follows (see proof in Section 3.3.2).
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3.3. Proof of VI formulations equivalent to MMDUE

Proposition 3.3 (Nagurney, 2009). LetF: n nand n
+denote the nonnegative orthant in n. The following complementarity problem:

x 0 x 0 x xFind such that ( ) and ( ) 0T = (10)

and RVI( , )n
+ have precisely the same solutions, if any.

We are going to use the Proposition 3.3 to prove the equivalence between the MMDUE and the VI problems formulated in Section
3.2.

3.3.1. Single-layer mode choice
Proof. From the UE conditions (5):
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Let the vector rs t{ ( , )}=C C , since rs t( , )C is identical for all paths of all modes between any fixed OD pair rs and departing time t,
then f f( )TC is 0, thus,
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f f f f f f f f f( ) ( ) ( ( ) ) ( ) ( ) ( )T T T
1 1 1= + =C (13)

Therefore, VI( , )1 1 is equivalent to VI( , )1 1 . Applying the DUE condition with equations above, we have f f( ) 0T
1 = . By

Proposition 3.3 we know the DUE is equivalent to VI( , )1 1 , hence it is also equivalent to VI( , )1 1 . □

3.3.2. Two-layer mode choice
Proof. Similar to the proof of single-layer case in Section 3.3.1, from UE conditions (7) we have,
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Also from UE conditions (7) we have ( )µ elnm t
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From one-layer mode choice case, we have µ rs t( , )m t
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Similar to the proof of single-layer case in Section 3.3.1, since rs t( , )C is identical for all paths of all modes between any fixed OD
pair rs and departing time t, then VI( , )2 2 is equivalent to VI( , )2 2 . Applying the DUE condition to the equations above, we have

f f( ) 0T
2 = . By Proposition 3.3 we know the DUE is equivalent to VI( , )2 2 , hence it is also equivalent to VI( , )2 2 . □

3.4. Existence and uniqueness of the solution to MMDUE

We have proved the equivalence between MMDUE and its VI formulations in Section 3.3. So the existence and uniqueness of the
solution to MMDUE is equivalent to the existence and uniqueness of the solution to the VI problems. In Nagurney (2009), the
conditions for existence and uniqueness of solution to a general VI problem VI( , ) is provided and proved, see Proposition 3.4. It is
proved using Brouwer’s Fixed Point Theorem.

Proposition 3.4. If is a compact convex set and x x( ), is continuous on , then the variational inequality problemVI( , )admits at
least one solutionx . If x( )is strictly monotone on . Then the solution is unique, if one exists.

Given ,1 2 are both polyhedral, they are both compact convex sets. So the existence of a solution depends on the continuity of
f f( ), ( )1 2 on f . From (6) and (9) we know in ,1 2 all other terms apart from c f( ) are continuous with respect to f . In c f( ), the only

term associated with f is wk t
rs
, based on the definition in (1)–(4), which is the actual travel time including car/bus/railway travel time,

walking time, transfer time and parking cruising time calculated by the DNL model. In this research, we assumed the walking time is
independent of path flow f . Though the transfer time and the parking cruising time are dependent on f in our model, here we simplify
them to be independent of f only to work with the solution existence. With this simplification, the existence of a solution solely
depends on the continuity of car/bus/railway travel time on the path flow f .

In the DNL process, railway travel time is almost constant according to the pre-determined railway schedule, car/bus travel time
can be computed from different network traffic flow models. The continuity of exit-flow model was established by Wie et al. (1995)
and point-queue model by Huang and Lam (2002), but for more complicated models like the cell transmission model (Daganzo, 1995)
and link queue model (Jin, 2012), the continuity remains an open question. Under our MMDUE setting, the existence of the solution
to the VI problem hence the MMDUE is extremely hard to prove rigorously, due to the complicated structure of our simulation model
with cell-based traffic flow model, the possibility of link spill-back, and the different route choice behaviors and flow dynamics of
multi-class vehicles. Since this is not the focus of this research, here we assume the VI problems VI( , )1 1 and VI( , )2 2 both admit
at least one solution. However, the strict monotonicity of f( )1 on 1 does not stand for general cases, according to Proposition 3.4 the
solution is not unique if one exists.

Even though the existence of the solution to MMDUE has not yet be proven rigorously, from a pragmatic standpoint, it is still
necessary and advantageous to use this general framework of formulating and solving large-scale multi-modal network equilibrium
with multi-class vehicles. Fig. 4 is an abstraction of the MMDUE framework proposed in this paper at a higher level comparing to
Fig. 2. At the “Simulation” phase, the path travel costs are generated using multi-modal dynamic network loading, while at the
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“Updating” phase, the travelers’ mode and route choices hence the network flow are updated using a gradient projection method that
efficiently and effectively leads to convergence. We introduce the Simulation phase in Section 4 and the Updating phase in Section 5.

Note for formulating and solving the MMDUE in a more applicable way, the OD demand for each time interval t is fixed, so there is
no departure time choice in this paper. However, it is straightforward to extend MMDUE to accommodate departure time choice by
relaxing the feasibility set , e.g. relax 1 to f q qf{ | }k t m k t

rs rs
t t

rs
1 , , ,= = = . In the next section, a DNL model for computing the

dynamic travel time wk t
rs
, and hence cm k t

rs
, , and cm g m k t

rs
, ( ), , is introduced. Then the solution algorithm to the VI problems

VI VI( , ), ( , )1 1 2 2 is provided in Section 5.

4. Multi-modal network flow simulation and travel time estimation

The estimation of the travel time of each mode and path in the network is achieved by a mesoscopic DNL model. For example, as
shown in Fig. 5, the travel time of driving consists of car travel time from home to the CBD parking area, parking cruising time in the
parking area and possibly a walking time from the parking area to the destination. In the park-and-ride mode, the travel time consists
of car travel time, parking cruising time, transfer time (bus waiting time), bus travel time and walking time from the bus stop to the
destination. For all travel modes, the definitions of wk t

rs
, in Eqs. (1)–(4) are as follows:

w w w w
w w w
w w w w w
w w w w w

Driving: (car travel) (parking cruising) (walking)
Ride-hailing: (waiting) (car travel)
Transit: (walking) (transfer/waiting) (bus/railway travel) (walking)
Park-and-ride: (car travel) (transfer/waiting) (bus/railway travel) (walking)
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= + + + (18)

Here t t t t< < < represents the start time of a trip component along a trip chain, such as “car travel”, “walking” or “bus
travel”, respectively. One component of a trip would start right after the end of the immediate past component.

4.1. Car/bus/railway travel time

The railway transit has its own infrastructure, and hence the railway travel time is assumed to be independent of other modes. Its
travel time follows the planned schedule and is not affected by the path flows f on the auto network. However, most cars and buses
share the same auto network to form mixed traffic. In this research, the DNL model considers, on the auto network, heterogeneous
vehicular flow propagation through links/nodes, including light-duty vehicles and heavy-duty vehicles like buses and trucks. An
example fundamental diagram of class 1: passenger cars and class 2: buses and trucks are shown in Fig. 6. Class 1 vehicles have larger
free-flow speed, maximum flow rate as well as jam density.

For modeling the heterogeneous vehicle flow on links, we adopted a multi-class traffic flow model proposed in Qian et al. (2017),
which can model the flow dynamics consisting of multiple classes of vehicles with distinct flow characteristics. It pragmatically
generalizes the cell transmission model (Daganzo, 1994; Lebacque, 1996) to multi-class heterogeneous vehicle flow. It includes the
concept “physical space split” for each class, which is the fraction of physical space that each vehicle class occupies and uses to
progress. Then the “perceived equivalent density” of each class is calculated, representing the equivalent density perceived by some
vehicle class, if converting all other class vehicles to this class based on the space they occupied. At each loading time interval,
vehicles move through cells following the relations between upstream demand and downstream supply computed using the “physical
space split” and “perceived equivalent density”, as well as the fundamental diagram of each class. The main feature of this multi-class
flow model is that it encapsulates three mixed flow regimes: one class can overtake the other class under free flow, overtaking occurs

Fig. 4. The high-level abstraction of the whole MMDUE framework.

Fig. 5. An example of driving mode and park-and-ride mode: breakdown of the actual travel time.
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restrictively under semi-congestion, and no overtaking can occur under congestion. Details can be found in Qian et al. (2017) and Pi
et al. (2019), comparing FASTLANE by Van Lint et al. (2008).

Here we present a node model for vehicular flow evolution through junctions. For a junction j, we used a relaxed version of the
general node model introduced by Nie (2006). Denote the set of all upstream links by A j, and the set of all downstream links by Aj .
Also, denote the turning proportion from any upstream link a A j to any downstream link b Aj at time t by t( )a b , where

a A1,b A a b jj
= . The flux from any upstream link a A j to downstream link b Aj is qa b:

d t s t
d t

d t
q min ( ) , ( )

( )
( )a b a a b b

a a b

A bj

=
(19)

where for any link a, the link demand d t( )a and supply s t( )a can also be computed for deciding the number of vehicles to be moved
through the junctions.

Signalized junctions could also be applied to the network if data about signal timings are available. For large-scale mesoscopic
simulation, the uncontrolled junction model (19) above usually works well enough for the estimation of travel states. It is also
important to note that our model can successfully include the effect of queuing and spill-back in the dynamic network loading. The
implementation of the above link and node models are shown in Fig. 7, where the arrows represent how we move different classes of
vehicles within the links and among different links through the nodes.

As shown in Fig. 7, the link model ensures first-in-first-out (FIFO) for each vehicle class separately, so the car and bus travel time
can be computed using their respective cumulative curves. Cumulative curves are built by continuously counting and adding up the
number of arriving and departing vehicles in each time interval. For each link i, there are one arrival and one departure curves for
passenger cars A t( )i1, and D t( )i1, , and similarly for buses/trucks A t( )i2, and D t( )i2, . So the car and bus travel time departing at t from r
to s along path k, if k consists of a link sequence a a a{ , , , }n1 2 … , can be computed as follows:

w D A D D A t t
w D A D D A t t
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(bus travel) ( ( ( ( ( )))))
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rs

a a a a a

k t
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1

1,

, 2,
1

2, 2,
1

2,
1

2,

n n n

n n n

1 1 1

1 1 1

=
= (20)

4.2. Parking cruising time

From day to day, parking cruising time is usually expected to depend on the expected parking occupancy in the targeted area. A
typically expected parking space searching time function is approximately flat under low or medium occupancy but increases
drastically when the occupancy is high and goes toward infinity when the parking area is full. Denote the parking occupancy of
parking area i at time t by e t( )i . If we assume all vehicles would park in the parking area closest to their destinations, then e t( )i is

Fig. 6. Fundamental diagrams of class 1: passenger cars and class 2: buses and trucks. uF : free-flow speed, qc : lane capacity, J : jam density.

Fig. 7. Implementation of link and node models.
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determined by the network loading process, namely adding the number of vehicles arriving and subtracting the number of vehicles
leaving. For studying the whole morning commute period, it is assumed at t 0= the occupancy is zero, that is e (0) 0i = for all parking
area i. A generic cruising time function is (Axhausen et al., 1994; Qian and Rajagopal, 2014):
w e tF(parking cruising) ( ( ))k t

rs
i e t E, 1 ( ) /

i
i i

= = where the parking area i is on path k, and the i is the average parking time of a parking
area when it is empty. Ei is the total capacity of the parking area. The parking occupancy e t( )i can be simulated through the multi-
modal dynamic network loading process. It can also be estimated using historical parking data (Yang and Qian, 2017) or predicted
using real-time multi-source of traffic data using statistical and machine learning models (Yang et al., 2019).

In our numerical examples, the parking area represents an aggregation of both on-street/off-street parking spaces near the
destination. Parking cruising time is included as part of the travel time in the generalized travel cost. The on-street cruising for
parking and its impact on through traffic are currently not modeled in this specific DNL and numerical examples. However, the
general MMDUE framework and solution algorithms proposed later still work for any generic dynamic simulation models. In the
future, we plan to advance the study to explicitly model on-street parking cruising.

4.3. Travel time of other modes

The waiting time of bus/railway is simplified to a constant (e.g. historical average waiting time, or half of the headway), which is
reasonable for high-frequency bus/railway service in morning commute peak hours (Pi et al., 2018; Zhang and Qian, 2018). The
historical average waiting time for the transit route at each transit stop is used in this study.

The walking time is proportional to the walking distance. Assuming the average walking speed is v̄, then the walking time is
w l v(walking) / ¯k t

rs
k t
rs

, ,= , where lk t
rs
, is the total walking distance in the route k at time t from r to s.

4.4. A comprehensive dynamic network loading (DNL) process

The DNL process runs for the whole study period (e.g. morning peak hours). The studying period was divided into 5-second
discrete loading intervals. During each loading interval, the steps are performed as shown in Algorithm [NETWORK-LOADING].
After the whole loading process is completed, we can compute the time-dependent travel time for each link in the multi-modal
network, and the generalized time/cost for paths along each OD. Mode split, link/path flow, and routes can also be updated. We
discuss the detail of solution algorithms to MMDUE in the next section.

5. Solution to the MMDUE

To solve the MMDUE problems (5) and (7), we formulate them as VI problems VI( , )1 1 in Eq. (6) and VI( , )2 2 in Eq. (9),
respectively. Solution algorithms to VI problems are categorized by: heuristic, projection-based, and feasible direction algorithms.
Heuristic algorithms often refer to the method of successive averages (MSA) (Sheffi, 1985), which computes an all-or-nothing flow
assignment based on time-dependent minimum-cost paths and then uses this flow assignment to update the old assignments as well as
the costs of paths, repeat iteratively until converges. The projection-based algorithm obtains a new solution at each iteration i by
solving f f f( ( ))i i i1 =+ , where is the projection operator to the feasible set of f (Han and Lo, 2002; Lo and Szeto, 2002).
Feasible direction algorithms aim to find the strict ascent direction for the Generic merit function (GMF), f f g f( ) min ( ) ( )T

g= .
Some example algorithms include Zhu and Marcotte (1993), Nie and Zhang (2010), Levin et al. (2015).

In this paper, we propose a new projection-based method for solving the VI problems, which has a closed-form representation for
the path flow of each O-D pair. The new solution algorithm is more efficient than existing projection-based methods for large-scale
networks.

Algorithm [NETWORK-LOADING]

Step 0 Initialization. Initialize an empty network, as well as cumulative curves for each link.
Step 1 Releasing. For all origin nodes, generate different classes of vehicles, e.g. cars, trucks, buses, etc., according to vehicle demand and path flow. Release

the vehicles to downstream links. For travelers choosing a transit mode, load them to the downstream transit network links.
Step 2 Node evolution. For all junction nodes in the auto network, move vehicles from upstream links to downstream links following Eq. (19). Update the

departure curves of upstream links and arrival curves of downstream links. For each parking nodes, store vehicles that enter and remove vehicles
that exit the parking area, and update the parking occupancy. For transit stop nodes, load passengers on/off bus/train only if the bus/train arrives.

Step 3 Link evolution. For all auto network links, move vehicles on the links cell-by-cell following the multi-class traffic flow model (Qian et al., 2017). If a
vehicle reaches the destination nodes, delete it from the network. For all bus network links, move the in-vehicle bus passengers as the propagation of
buses on the auto network. For all railway network links, move the railway passengers according to the railway schedule.

Step 4 Termination check. Stop when the end of the study time period is reached. Otherwise, go to Step 1.

5.1. Closed-form gradient projection

The gradient projection methods solve the proposed VI formulation by minimizing the regularized merit function (RMF), pre-
sented by f f g f g f( ) min ( ) ( ) || ||T

g
1

2 2
2= + , where is a regularization weight and can be either 1 or 2 in this study. One

can prove that the optimal solution to f( ) is the projection of f f( ) onto (Facchinei and Pang, 2007), as presented in
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g f f f f( ) ( ( )) argmin ( )g= = .
Also by Zhu and Marcotte (1993), f g f( ) is a strict descent direction for either f( ) at f , or g f|| ||22 when f( ) is Lipschitz

continuous and monotone. Therefore, the proposed VI formulation can be solved by f g f( )i i1 =+ at each iteration i. Oftentimes, the
projected gradient is solved by a quadratic programming solver, while in this paper we present a novel method that solves the
projected gradient in a closed-form.

For each individual OD pair rs, we can expand the g f( ) to a quadratic programming formulation presented in Eq. (21).

g f
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g k P t
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g k P
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k Prs rs
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,
+

=

(21)

where P Prs m m
rs= for one-layer model and P Prs m g m m g m

rs
( ) , ( )= for the nested model. Note here all routes from all modes are indexed

together and each route has a unique route indicator k. So, we omit the mode indicator m in the formulation above since the route
indicator k implicitly include the mode choice. We can compute the gradients of gk t

rs
, by solving Eq. (21) in a quadratic solver.

However, the dimension of gk t
rs
, grows exponentially with the network size, and evaluating the gradients becomes highly time-

consuming for large-scale networks. In this paper, we propose a new method to obtain the gradients by analyzing its Karush-Kuhn-
Tucker (KKT) conditions.

The KKT conditions of the formulation (Eq. (21)) are as follows:

g f µ

g g q

µ
µ g k

Stationarity: 2 ( )

Primal feasibility: 0,

Dual feasibility: 0
Complementary slackness: 0,
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where µk t
rs
, and are the dual variables. Combining the four conditions, if µ g f0,k t

rs
k t
rs

k t
rs

k t
rs

, , , , 2= = , and if µ g0, 0k t
rs

k t
rs

, ,> = . Also,

Fig. 8. (a) A simplified multi-modal network for downtown and southern Pittsburgh region used in the experiments. Note the bus line represents the
aggregation of all high-frequency bus routes in this area. Nodes and links are labeled on the figure. (b) The real network map. Origins 1–5 are all
large residential zones. Downtown (D1) is the only destination.
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by Primal feasibility we have g qk P k t
rs

t
rs

,rs
= . Then P k P k t

rs
2 | | ,rs rs
= . So for each iteration, we choose

0
c c

1

maxk k t
rs

Prs k Prs k t
rs

,
1

| | ,

< , the solution to the problem formulation (21) is presented by:

g f c
P

c1
| |k t

rs
k t
rs

k t
rs

rs k P
k t
rs

, , , ,
rs

=
(23)

The difference between the quadratic solver and our method is that our method has an analytical form if we decompose the whole
problem into individual OD pair. By analyzing the KKT conditions, we can get the gradients of the decision variables without solving
any optimization problem. The trick we are using is to adaptively choose in each iteration to satisfy the condition
0

c c

1

maxk k t
rs

Prs k Prs k t
rs

,
1

| | ,

< . In this paper, we choose
c c

1

maxk k t
rs

Prs k Prs k t
rs

,
1

| | ,

= for each iteration. More importantly, existing

quadratic solvers have to work with the path flow of all OD pairs simultaneously which is computationally heavy, whereas our
method computes the solutions for the flow of each OD pair separately. Clearly, our method can adapt to very large-scale networks.
Therefore, one can expect that our method is more efficient in large-scale networks. In the experiments, we also observe that our
method achieves a better convergence rate than the original quadratic solver method.

Note here the ck t
r s
,
, is exactly the generalized path travel cost cm k t

r s
, ,
, we defined in Section 3, with the mode indicator m omitted since

the route indicator k implicitly include the mode choice. It is calculated and updated from the multi-modal dynamic network loading
process in every iteration of our MMDUE algorithm, see Section 5.2.

5.2. Solution framework

The proposed formulation is path based. The number of paths with positive flow increases exponentially when the network and
number of modes grows. We adopt the column generation method to augment the path set at each iteration (Nie and Zhang, 2007),
and the time-dependent shortest path (TDSP) algorithm (Chabini, 1998) is run on the combined multi-modal graph to search for the
shortest path across different modes. The solution framework of the MMDUE problem (5) and (7) is summarized in Algorithm
[MMDUE-SOLVER].

Algorithm [MMDUE-SOLVER]

Step 0 Initialization. Initialize a path set, and initialize the path flow vector f such that the passenger demand q is evenly distributed to each path.
Step 1 Dynamic network loading. Generate vehicular demand from the passenger flow. Run a full [NETWORK-LOADING] process (Section 4.4) with

vehicular flow, and obtain the generalized path cost for each path.
Step 2 Passenger path set augmentation. Run a time-dependent shortest path algorithm on the graph presented in Fig. 1 with the travel costs obtained in Step

1, and append the shortest path to the path set Prs .
Step 3 Update passenger flow. Update the passenger path flow with the travel costs obtained in Step 1 using the gradient projection method presented in

Section 5.1.
Step 4 Convergence check. Stop when the path set Prs does not change and the change of path flow f is less than tolerance. Otherwise, go to Step 1.

6. Numerical experiments

We first solve the MMDUE in a simplified multi-modal network in Pittsburgh. The effectiveness and efficiency of the proposed
gradient projection method are examined. The sensitivity analysis with respect to parameters is thoroughly explored for policy
insights. To show the convergence performance and the efficiency of our model and algorithms on large-scale networks, we also test it
on a large-scale multi-modal network of the SR-41 network in Fresno, California.

6.1. A simplified multi-modal network for downtown and southern Pittsburgh

The MMDUE model is tested in the network shown in Fig. 8. The network is an abstraction of the real multi-modal network in the
Pittsburgh region, covering the district of Upper St Clair, Bridgeville, Mt Lebanon, Scott Township, Carnegie, Green Tree, Banksville,
Mt Washington and Downtown Pittsburgh, with I-79, I-376, US Route 19 and a light rail Red Line connecting the suburbs and the
downtown, see Fig. 8(b). The simplified network is shown in Fig. 8(a), with five origins O O1 5, one destination D1, nine nodes
(junctions), 16 links (road segments), three parking areas, one bus route, and one railway line. The parking area can be viewed as the
aggregation of all parking space in that area, and we only considered one bus route that represents the aggregation of all high-
frequency routes and one railway line. We also assume all travelers own or have access to a private car, which means 0= . This
allows all travelers to choose any travel modes in this experiment.

We have made efforts on calibrating the traffic flows and OD demand in the Pittsburgh metropolitan area in a separate project
(Ma and Qian, 2015; Ma et al., 2019; Ma and Qian, 2018), so the OD demands were employed in this study. The total passenger
demand is set as 30,000 for the morning peak hours (5 AM to 9 AM) in this area, from all origins O O1 5 to the only destination D1.
Note origins O O1 5 are all large residential districts, and the only destination D1 is downtown Pittsburgh. All link parameters are
listed in Table 1 and all modes and paths are listed in Table 2.O2 is the bus origin and only for releasing buses to the network.O5 is the
truck origin and only for releasing trucks to the network. All other parameters used in the experiment are listed in Table 3.
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Table 1
Link parameters. uF : free-flow speed, qc: lane capacity, J : jam density. Subscript 1: passenger cars, 2: buses and trucks.

Link Length (mile) # of lanes u F
1 (mph) u F

2 (mph) q c
1 (veh/h) q c

2 (veh/h) J
1 (veh/mile) J

2 (veh/mile)

l1 (n n1 2) 4.00 2 40 35 2000 1200 200 100
l n n( )2 1 5 4.50 3 65 55 2300 1200 200 100
l n n( )3 3 2 1.50 1 30 25 1800 1000 200 100
l n n( )4 2 3 1.50 1 30 25 1800 1000 200 100
l n n( )5 4 3 0.55 1 30 25 1800 1000 200 100
l n n( )6 3 4 0.55 1 30 25 1800 1000 200 100
l n n( )7 5 4 2.50 1 30 25 1800 1000 200 100
l n n( )8 4 5 2.50 1 30 25 1800 1000 200 100
l n n( )9 2 6 4.50 2 40 35 2000 1200 200 100
l n n( )10 5 8 6.00 3 65 55 2300 1200 200 100
l n n( )11 6 7 0.50 1 30 25 1800 1000 200 100
l n n( )12 7 6 0.50 1 30 25 1800 1000 200 100
l n n( )13 7 8 0.50 1 30 25 1800 1000 200 100
l n n( )14 8 7 0.50 1 30 25 1800 1000 200 100
l n n( )15 6 9 1.50 2 40 35 2000 1200 200 100
l n n( )16 8 9 1.50 3 65 55 2300 1200 200 100

Table 2
All modes and paths in the numerical experiment.

Path name Origin Destination Mode Sub-mode Path

Path 1 O1 D1 driving solo l l l l l101 2 10 16 105
Path 2 O1 D1 driving solo l l l l l101 1 9 15 105
Path 3 O1 D1 driving carpool l l l l l101 2 10 16 105
Path 4 O1 D1 transit railway l lrailway line101 105
Path 5 O1 D1 park&ride driving+bus l l l P l l l l101 1 106 3 106 9 15 105
Path 6 O1 D1 park&ride driving+bus l l l l l l P l l l l101 2 7 5 3 106 3 106 9 15 105
Path 7 O1 D1 park&ride driving+bus l l l l P l l l101 1 9 107 2 107 15 105
Path 8 O1 D1 park&ride driving+bus l l l l l l P l l l101 2 10 14 12 107 2 107 15 105
Path 9 O3 D1 driving solo l l l l l103 8 10 16 105
Path 10 O3 D1 driving solo l l l l l l103 5 3 9 15 105
Path 11 O3 D1 driving carpool l l l l l103 8 10 16 105
Path 12 O3 D1 transit bus l l l l l l103 5 3 9 15 105
Path 13 O3 D1 park&ride driving+bus l l l l P l l l l103 5 3 106 3 106 9 15 105
Path 14 O4 D1 driving solo l l l l104 13 16 105
Path 15 O4 D1 driving solo l l l l104 12 15 105
Path 16 O4 D1 driving carpool l l l l104 13 16 105
Path 17 O4 D1 park&ride driving+bus l l l P l l l104 12 107 2 107 15 105
Bus route O2 D1 N/A N/A l l l l l102 3 9 15 105
Through truck traffic O5 D1 N/A N/A l l l l l108 2 10 16 105

Table 3
All other model parameters.

Name Values

Morning commute model "$"6.4/= h "$"3.9/= h "$"15.2/= h t 9= AM
Logit model , 1.5g G

1
(1) (1)

1 = , 1.0g G
2

(2) (2)
2 = , 2.0g G

4
(4) (4)

4 = 1.01 = 1.0m
2

{1,2,4} =
Parking-1 (CBD) p "$"101 = 21 = min E 100001 =
Parking-2 p "$"32 = 12 = min E 200002 =
Parking-3 p "$"33 = 13 = min E 200003 =
Bus "$"2.75k

rs = 0k t
rs
, = frequency=15min waiting=7.5min

Railway "$"3.75k
rs = 0k t

rs
, = frequency=12min waiting=6.0min full trip=40.0min

Carpooling (1) 0k t
rs

, = (2) "$"1k t
rs

, =
Dynamic network loading unit time=5 s # of intervals=2880 start time=5AM end time=9AM
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6.1.1. Convergence
We solve the MMDUE with the solution framework presented in Section 5.2. Changes in the equilibrium gap against the number

of iterations using our proposed solution and quadratic solver are presented in Fig. 9. All the experiments below are conducted on a
desktop with Intel Core i7-6700 K CPU @ 4.00 GHz×8, 2133MHz 2×16GB RAM, 500 GB SSD. We run our algorithm for 100
iterations, and the proposed method outperforms the quadratic optimization method in terms of the equilibrium gap. It takes the
proposed method 211s to complete 100 iterations, comparing to the 227s taken by the quadratic solver.

6.1.2. Solution of network flow and mode choices
The path choice probability over the morning peak for OD pair (1, 1) and OD pair (3, 1) is presented in Fig. 10. For OD pair (1, 1),

most travelers departing in 5 AM–6 AM choose carpooling and railway to commute, and more travelers select park-and-ride (PnR)
after 7 AM. The generalized cost of the metro is relatively low, as a result of low railway fare. After 8 AM, taking the railway will incur
a high late arrival cost penalty, so the path flow of railway decreases dramatically. Using carpool directly to CBD is another preferred
choice before 8 AM since the roads to CBD are not congested yet. After 8 AM, cruising time for parking in the CBD area increases,
leading to a decline in the carpool probability. In contrast, the generalized park-and-ride cost is low when the CBD is congested
because of the savings on travel time and parking fee. Hence park-and-ride mode becomes the most preferable choice after 8 AM. At
7 AM, the flow of paths 7 and 8 has a spike, possibly due to the unstable UE solution when the cost of path 7 and 8 coincide. The
stability of MMDUE can be improved in future research by the method proposed by (Tobin and Friesz, 1988; Patriksson, 2004).

Fig. 9. Convergence curves for both gradient projection methods.

Fig. 10. Time-varying path choice for OD pair (1, 1) and (3, 1).
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Similar choice patterns can be observed for OD pair (3, 1). One observation is that there are few travelers choosing solo-driving all the
way to downtown, which is probably attributed to the high parking fee in the downtown, relatively low inconvenience cost for
carpool, and the way transit and park-and-ride are provided in this experiment.

6.1.3. Sensitivity analysis on total demand level
We change the total demand from 75% to 125% of the O-D demand in the original problem settings, keeping other parameters the

same. We solve the MMDUE under different demand levels and plot the average user cost for different modes and the route choice for
OD pair (1,1) in Fig. 11.

It shows clearly the average passenger cost increases with respect to the demand level, and the influence of demand level to the
average cost is approximately “linear”. The cost of driving passengers and park-and-ride passengers increase since the network
become over-saturated, while the cost of transit passengers almost remain the same, as a result of constant railway cost. Also, the
increasing demand will generally force travelers to avoid driving in routes with high congestion levels. Hence for OD (1, 1), the park-

Fig. 11. The influence of total demand on average cost per traveler and the path choice for OD pair (1, 1).

Fig. 12. Heatmap of average cost for total traffic and different modes.
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and-ride flow drops on Path 8 and increases on Path 7, as a result of more and more congested highways/freeways. Fig. 11 can be
used to determine the marginal travel time/cost at different demand levels, which supports urban planning for policymakers.

6.1.4. Sensitivity analysis on parking and bus fare
We study the joint influence of bus fare and parking fare. We change the bus fare and parking fare by applying a multiplier to the

fare in the original settings, which ranges from 1 to 5. We solve the MMDUE under different bus and parking fares, and plot the
average cost for all travelers, driving travelers, transit travelers and park-and-ride travelers in Fig. 12.

When the bus fare increases, the average traffic cost and average park-and-ride cost increase. This is because the park-and-ride
cost includes bus fare and park-and-ride is one of the most preferred modes for all travelers. When the parking fare increases, the
average costs of driving and park-and-ride increase substantially, because in both modes the travelers need to pay for the parking fee.
In this case, the average traffic cost also increases. One interesting observation is that the average transit cost is relatively stable,
which implies that transit cost has little change when bus fare and parking fare is changing. One important reason is that transit
passengers do not pay the parking fare, and another reason is that many transit passengers can switch from bus to railway. Travel cost
incurred on the railway model does not change as much regardless of parking or bus fare.

6.1.5. Influence of inconvenience (impedance) cost
In the original settings, the inconvenience (impedance) costs for carpool, transit, and park-and-ride are assumed to be at a very

low level for testing the MMDUE model and the algorithm. As a result, the driving flow is marginal in the MMDUE solutions, which is
deviated from the real situation in the study area. In this section, we will explore the impact of inconvenience cost on travelers’ mode
choice. We set the inconvenience costs for carpool, transit, and park-and-ride to be $5 under MMDUE. The path choice probability
over the morning peak for OD pairs (3, 1) and (4, 1) is presented in Fig. 13. Generally, more travelers inO3 andO4 choose solo-driving
before 7 AM, due to higher (inconvenience) costs for transit/park-and-ride. To conclude, the inconvenience costs has a considerable
impact on travelers’ mode choice. Therefore, public transit with great accessibility effectively attracts travelers. In future studies, a
more fine-grained model should be developed to estimate the values of inconvenience costs, for example, there should be different
inconvenience costs for groups of travelers with different demographic or traveling characteristics.

Fig. 13. Time-varying path choice for OD pairs (3, 1) and (4, 1) with high inconvenience costs.

N

Fig. 14. The SR41 network.
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6.2. A large-scale multi-modal network for SR-41, California

To show the convergence performance and the efficiency of our model and algorithms on large-scale networks, we also test our
model and algorithms on a large-scale multi-modal network for SR-41, California. It is located at Fresno, California, with SR-41
highway in the center, see Fig. 14. It contains 2,065 links, 1,441 nodes and 7,110 OD pairs. The public transit system is operated by
the Fresno Area Express (FAX). There are 16 bus routes operated in this network, including route 1 southbound, route 9 eastbound/
westbound, route 28 eastbound/westbound, route 32 southbound, route 33 eastbound/westbound, route 34 southbound/north-
bound, route 35 eastbound/westbound, route 39 eastbound/westbound, and route 41 eastbound/westbound. There is no railway
traffic in this network. There are also 199 parking lots scattered in this network, near important intersections or other locations in the
city. The travel demand for this network is in all 170,399 for the 3-hour morning peak period, obtained from previous research Liu
et al. (2006) and Zhang et al. (2008). We also assume all travelers own or have access to a private car, which allows all travelers to
choose any of the three travel modes including driving, park-and-ride and bus transit. The parameters in the morning commute model
and nested logit model are used the same as shown in Table 3.

For multi-modal large-scale networks, how to generate the feasible path set for each OD pair with several travel modes is
challenging. In this study, the path set is generated for each travel mode separately. For driving, three shortest paths are computed on
the auto network, each under one of the three traffic conditions: free-flow, mild congestion and severe congestion. For bus transit, the
paths are generated by finding the feasible bus routes connecting the origin and destination with a total walking distance less than a
threshold, namely 500m. Finally, the paths for park-and-ride are also generated by finding the shortest paths on the combined multi-
modal network, with the total walking distance being limited to be less than the threshold. Limiting the walking distance among
parking, bus stops and origins/destinations allows efficient searching for feasible paths. In this study, we generate in all 8813 paths
for solo-driving and carpool travelers, 344 paths for bus transit, and 1205 paths for park-and-ride travelers. We use the pre-de-
termined fixed path sets for each mode. The path set could also be generated from the combined multi-modal network in a dynamic
fashion using a column generation method, which is more computationally intensive but may help improve the equilibrium results.
We are also going to explore the influence of fixed/dynamic path set on the equilibrium results in our future study.

The convergence of both our proposed gradient projection method and the quadratic solver is presented in Fig. 15. The results
show our proposed method considerably outperforms the quadratic solver in both the equilibrium gap and computational time. In
large-scale experiments, the dynamic network loading process and the calculation of generalized cost for each path are computa-
tionally intensive in addition to the gradient projection. Thus, the overall computational efficiency could be improved significantly if
we can speed up those two components in the future. In conclusion, this experiment shows the applicability and efficiency of applying
our model and solution algorithms to large-scale networks that consist of thousands of links, nodes, and OD pairs, as well as a large
feasible path set.

7. Conclusion

This paper formulates and solves a general dynamic traffic assignment problem for multi-modal dynamic networks. It estimates
spatio-temporal passenger and vehicular flows in a general multi-modal network that explicitly considers parking and many

Fig. 15. The convergence performance for both gradient projection methods in the SR41 network.
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conventional and emerging travel modes, including solo-driving, carpooling, ride-hailing, bus transit, railway transit, and park-and-
ride. Vehicular flows, namely cars, trucks, and buses, as well as passenger flow, are integrated into a holistic dynamic network
loading (DNL) models with heterogeneous traffic flow, transit, parking, and mode transfer. Travel behavior of passenger demand on
modes choice is encapsulated by a multi-layer nested logit model. We formulate a general multi-modal dynamic user equilibrium
(MMDUE) as a Variational Inequality (VI) problem. A new gradient projection method is proposed and shown to efficiently solve the
VI problem on large-scale networks.

Numerical experiments are conducted on a multi-modal network of the Pittsburgh region along with sensitivity analysis with
respect to demand, infrastructure features, and management strategies. We show that total passenger demand, parking prices, transit
fare, and ride-sharing impedance can effectively impact both system performance and individual user costs. This indicates trans-
portation system planning and operation require a holistic solution across all modes. Experiments on a large-scale multi-modal
network in Fresno, California also show our model and solution method has good convergence performance and computational
efficiency. The proposed theory and algorithms provide a possible comprehensive solution for managing such complex multi-modal
transportation networks.

The general framework of the MMDUE formulation and solution proposed in this paper is a complete inclusion of most travel
modes existed in modern urban traffic systems. However, except for a few metropolitans, most cities or towns do not have all travel
modes discussed in this paper. Our MMDUE framework, in these cases, could be reduced to simpler cases, for example, bi-modal
choices, driving with parking choices, etc. The MMDUE framework is flexible enough for being applied to different scenarios and
hence to be useful in most urban traffic systems. We introduce some example scenarios as follows: (1) Solo-driving and carpooling:
For small cities or towns without public transit and ride-hailing service, solo-driving and carpooling are almost the only travel modes
for daily commuting if we don’t consider walking for long distance. In this case, the general framework is reduced to two-mode
choices, solo-driving and carpooling. Travelers choose solo-driving and carpooling based on the travel time and carpooling im-
pedance. The network in our MMDUE framework now only consists of the auto network, so the routing is performed on the auto
network and path sets should be relatively smaller than similar scale multi-modal networks with extra virtual bus network and
railway network. The DNL model could also be simplified to homogeneous traffic since only passenger car flow and travel time are
required. (2) Driving with parking choices: If parking behavior is also considered, then different parking areas should be added to the
network. In this case, travelers choose solo-driving or carpooling, as well as choosing the parking location with the lowest total travel
cost. The parking costs including the parking cruising time and parking fee will both affect the traveler’s choice heavily, unveiled by
previous studies (Qian et al., 2012; Qian and Rajagopal, 2014). Long parking cruising time and high parking fee can enforce traveler
to park farther and walk to their final destination. A high parking fee will also encourage carpooling since carpoolers can share the
parking fee together. The DNL, in this case, should explicitly model the parking area occupancy at each time interval for estimation of
the dynamic parking cruising time. The MMDUE solution will show not only the dynamic states of the auto network but also the
dynamic evolution of parking occupancy of each parking area. (3) Driving and transit: For cities with the public transit system, if
parking and park-and-ride are not considered, then travelers choose travel modes from driving, bus transit and possibly railway
transit. The feasible path set for each OD should include all feasible paths under each mode. So the path set generation and routing
are always performed on the auto network, virtual bus network and railway network all combined as shown in Fig. 1. DNL model
should run with multi-class vehicles on the auto network, and different link travel time of passenger cars and buses should be
computed. Based on the MMDUE framework, the influence of new public transit routes, new stops, and other developing mass-
transport classes like demand responsive transit and microtransit can be studied (Xu et al., 2016, 2017). The MMDUE framework can
also be used to evaluate and optimize the public transit schedules, trip frequencies, bus/train size and seat numbers and other
operational strategies.

The proposed MMDUE model serves as an underlying model to support holistic decision making for planning and traffic man-
agement, at any spatial scale. What is not addressed in this paper is how to calibrate the parameters of MMDUE to best fit the real-
world data acquired from conventional and emerging sensors in the multi-modal network. The process of model calibrating with day-
to-day multi-modal data will be our research focus in the near future. Also, the outcome of this paper serves as a general framework of
large-scale multi-modal network modeling and equilibrium analysis with the inclusion of many different travel modes, some of which
are simplified like the ride-hailing mode. In our future research, we are going to extend and apply this framework to different
scenarios, especially the cases with shared travel modes, for example, the networks with driving and ride-hailing (Xu et al., 2019,), or
ride-hailing and public transit, etc. Another extension to this study is to incorporate the uncertainties, for example, uncertainties from
traveler’s cost function, uncertainties from travel demand (Pi and Qian, 2017), etc. which lead to the stochastic equilibrium. In
conclusion, our framework is quite flexible for many application scenarios and hence to be applicable for most transportation sys-
tems. As a supplementary material, the proposed framework is implemented in Python/C++ and open-sourced on Github.1
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Appendix A. Notation table

The main notations used in this paper are in Table A.4. Other notations not included in the table were introduced in the text.
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Table A.4
The main notations used in this paper.

Notations Description

t index of time
r s, indices of origins and destinations, respectively
m index of first level mode choices

g m( ) index of second level mode choices
k index of paths

wk t
rs
, actual travel time through path k at time t from r to s, unit: second

c c,m k t
rs

m g m k t
rs

, , , ( ), , generalized travel cost of path k in mode m and in mode m g m{ , ( )} at time t from r to s, unit: dollar

µ µ,m t
rs

m g m t
rs

, , ( ), equilibrium travel cost of mode m and m g m{ , ( )} at time t from r to s, unit: dollar

Prs set of all paths from r to s
P P,m

rs
m g m
rs
, ( ) set of paths of mode m and m g m{ , ( )} from r to s

f f,m k t
rs

m g m k t
rs

, , , ( ), , flow of path k in mode m and in mode m g m{ , ( )} at time t from r to s

h h,m t
rs

m g m t
rs, , ( ), total flow of mode m and m g m{ , ( )} at time t from r to s

qt
rs the overall flow of all modes at time t from r to s

f vector of path flows
,1 2 vectors of generalized costs
,1 2 sets of feasible path flow assignments

k
rs transit fare of transit route k from r to s, unit: dollar

k t
rs
, perceived inconvenience cost of the transit mode of transit route k from r to s, unit: dollar

pi parking fee at parking lot i, unit: dollar
i average parking time of parking lot i

Ei the total capacity of the parking lot i
n( )k t

rs
, carpooling impedance cost through path k at time t from r to s with total n riders, unit: dollar

t standard work starting time
, , the unit cost of travel time, for arriving late and for arriving early, respectively, unit: dollar/h

, , ,m
g m
m m
( ) 1 2 parameters in the nested-logit mode choice model
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